
ANALYSIS AND COMPARISON OF FULLY HOMOMORPHIC ENCRYPTION
APPROACHES OVER INTEGERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANSU BOZKURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

FEBRUARY 2022

Approval of the thesis:

ANALYSIS AND COMPARISON OF FULLY HOMOMORPHIC ENCRYPTION
APPROACHES OVER INTEGERS

submitted by CANSU BOZKURT in partial fulfillment of the requirements for the
degree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Kestel
Dean, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, IAM, METU

Dr. Cansu Betin Onur
Co-supervisor, Cryptography, IAM, METU

Examining Committee Members:

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, IAM, METU

Assoc. Prof. Dr. Murat Cenk
Cryptography, IAM, METU

Assoc. Prof. Dr. Fatih Sulak
Department of Mathematics, Atılım University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: CANSU BOZKURT

Signature :

v

vi

ABSTRACT

ANALYSIS AND COMPARISON OF FULLY HOMOMORPHIC ENCRYPTION
APPROACHES OVER INTEGERS

BOZKURT, CANSU
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

Co-Supervisor : Dr. Cansu Betin Onur

February 2022, 53 pages

The time period after the mid-20th century was named as information age or digital
age. In that age, the world is being digitalized very fastly. The amount of data trans-
ferred and processed online is increasing rapidly. As a result, data protection became
an essential topic for researchers. To process or make a computation on the encrypted
data deciphering ciphertext first causes a security flaw. Homomorphic encryption
(HE) algorithms were designed to make computations on data without deciphering
it. However, HE algorithms are able to work for a limited amount of processing
steps. Fully homomorphic encryption (FHE) algorithms are developed to solve this
problem. It is feasible to apply any accurately calculable operation on encrypted
data. This thesis presents definitions, properties, applications of FHE. Some con-
structions of FHE schemes based on the integers are also analyzed. Furthermore,
the computational complexity of two algorithms, namely the DGHV scheme and
Batch DGHV scheme has been computed and their efficiency are compared based
on the complexities. While the DGHV scheme encrypts the one-bit message, the
batch DGHV scheme encrypts an ℓ-bit message vector m at a time. The primary pur-
pose is to research which option is more efficient for encrypting ℓ-bit messages. The
first option is to use the DGHV scheme for ℓ-times. The second option is to use the
batch DGHV scheme one time. We conclude that for message size ℓ when security
parameter ℓ ≤ λ3/2 using batch scheme is more efficient than using DGHV scheme.

vii

Keywords: Fully Homomorphic, Batch Fully Homomorphcic, Homomorphic En-
cryption, Bootstrapping, Squashing

viii

ÖZ

TAM SAYILAR ÜZERİNDEKİ TAM HOMOMORFİK ŞİFRELEME
YAKLAŞIMLARININ ANALİZİ VE KARŞILAŞTIRILMASI

BOZKURT, CANSU
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Ortak Tez Yöneticisi : Dr. Cansu Betin Onur

Şubat 2022, 53 sayfa

20. yüzyılın ortalarından sonraki dönem bilgi çağı veya dijital çağ olarak adlandırıl-
mıştır. Bu çağda dünya çok hızlı dijitalleşmiştir. Çevrimiçi olarak aktarılan ve işlenen
veri miktarı hızla artmıştır. Sonuç olarak, veri koruma araştırmacılar için önemli bir
konu haline gelmiştir. Şifreli bir veri üzerinde işlem veya hesaplama yapmak için
şifrenin önce deşifre edilmesi bir güvenlik açığına neden olmaktadır. Homomorfik
şifreleme algoritmaları, verileri deşifre etmeden hesaplama yapmak için tasarlanmış-
tır. Ancak biraz homomorfik şifrelemeler algoritmaları sınırlı miktarda işlem adımı
için uygulanabilirler. Bu sorunu çözmek için tam homomorfik şifreleme algoritmaları
geliştirilmiştir. Bu yöntemle şifrelenmiş verilere herhangi bir hesaplanabilir fonksi-
yon uygulanabilir. Bu tez içerisinde tam homomorfik şifrelemenin tanımları, özellik-
leri ve uygulamaları sunulmuştur. Bazı tamsayılara dayalı tam homomorfik şifreleme
şemalarının yapıları da analiz edilmiştir. Ayrıca, DGHV şeması ve gruplu DGHV
şeması (bir düz metin vektörünü tek bir şifreli metin halinde homomorfik olarak şif-
relemeyi destekleyen bir şema) olmak üzere iki algoritmanın hesaplama karmaşıklığı
hesaplanmış ve verimlilikleri karşılaştırılmıştır. DGHV şeması tek bitlik mesajı şifre-
lerken, gruplu DGHV şeması her seferinde ℓ bitlik mesaj vektörünü şifreler. Bu tezde
Öncelikli olarak ℓ-bit uzunluğundaki bir mesajın şifrelenmesinde hangi şemanın kul-
lanımının daha verimli olduğu araştırılmıştır. Şifreleme için DGHV şemasını ℓ kere
çalıştırmak ile gruplu DGHV şemasını bir kere çalıştırmak arasındaki verimlilik farkı

ix

hesaplanmıştır. Yapılan hesaplamalar sonucunda ℓ uzunluğundaki bir mesaj için gü-
venlik parametresi ℓ ≤ λ3/2 olduğunda gruplu DGHV şemasını kullanmanın DGHV
şemasına göre daha verimli olduğu sonucuna ulaşılmıştır.

Anahtar Kelimeler: Tam Homomorfik Şifreleme, Gruplu Tam Homomorfik Şifre-
leme, Homomorfik Şifreleme, Önyükleme Methodu

x

To my family

xi

xii

ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor Assoc.
Prof. Dr. Murat Cenk for his patient guidance, enthusiastic encouragement and valu-
able advices during the development and preparation of this thesis. His willingness
to give his time and to share his experiences has brightened my path.

I would also thank to my co-supervisor Dr. Cansu Betin Onur for her guidance,
support and motivation throughout this thesis.

Furthermore, I would like to thank my family and my friends for listening to my
concerns, believing in me and their supports.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xxi

LIST OF FIGURES . xxii

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Historical Process and Literature Review 2

1.2 Outline . 4

2 PRELIMINARIES . 5

2.1 Definition and Properties 5

3 HOMOMORPHIC ENCRYPTION AND ITS APPLICATIONS . . . 11

3.1 Practical Applications for Homomorphic Encryption 11

3.2 Cloud Services . 12

xv

3.2.1 In Healthcare: Secret data and Public functions . . 12

3.2.2 In Economy and Finance: Secret Data and Secret
functions . 13

3.2.3 Advertising and Pricing 13

3.2.3.1 Some Functions with FHE 14

4 FULLY HOMOMORPHIC ENCRYPTION OVER THE INTEGER . 15

4.1 Approximate Greatest Common Divisor Problem 15

4.2 Somewhat Homomorphic Encryption Scheme Over the Integer 15

4.2.1 Symmetric Key Version of the Scheme 16

4.2.1.1 Key Generation 16

4.2.1.2 Encryption 16

4.2.1.3 Decryption 16

4.2.2 Asymmetric Key version of the Scheme 17

4.2.2.1 Key Generation 17

4.2.2.2 Encryption 17

4.2.2.3 Evaluate 17

4.2.2.4 Decryption 17

4.2.3 Homomorphic operations 18

4.2.3.1 Additive homomorphism 18

4.2.3.2 Multiplicative homomorphism 18

4.3 General review of FHE scheme 19

4.3.1 How to Construct a FHE Scheme 19

xvi

4.3.2 A General Explication 20

4.4 Converting DGHV to FHE 22

4.4.1 Squashing Step 22

4.4.1.1 Key Generation 23

4.4.1.2 Encrypt and Evaluate 23

4.4.1.3 Decryption 23

4.4.2 Bootstrapping . 23

5 EFFICIENCY PROBLEM OF DGHV SCHEMA 25

5.1 Extending the message size or message space 26

5.1.1 Batch FHE Over the Integers 26

5.1.1.1 Key Generation 27

5.1.2 Encryption . 28

5.1.3 Decryption . 28

5.1.4 Addition and Multiplication 28

5.1.5 Making The Scheme Fully Homomorphic 28

5.1.5.1 Key Generation 29

5.1.5.2 Expanding 29

5.1.5.3 Decryption 29

5.1.6 FHE Over the Integers for Non-Binary Message
Spaces . 29

5.1.6.1 Q-ary Half Adder 30

xvii

5.1.6.2 Low-Degree Circuits for Sum of Inte-
gers 31

5.1.7 Batch SwHE Over the Integers for Non-Binary
Message Spaces 33

5.1.7.1 Key Generation 34

5.1.7.2 Encryption 34

5.1.7.3 Decryption 35

5.1.7.4 Evaluation 35

5.2 Batch FHE scheme: Bootstrapping for Large Plaintext 35

5.2.1 Squashed Scheme 35

5.2.1.1 Key Generation 35

5.2.1.2 Encrytion and Evaluation 36

5.2.1.3 Decryption 36

6 TIME COMPLEXITIES OF ALGORITHMS 39

6.1 Time complexity of DGHV scheme 40

6.1.1 Key Generation 40

6.1.2 Encryption . 40

6.1.3 Squashing . 41

6.1.3.1 Key Generation 41

6.1.3.2 Encrypt and Evaluate 42

6.1.3.3 Decryption 42

6.2 Time complexity of Batch DGHV scheme 42

xviii

6.2.1 Key Generation 43

6.2.2 Encryption . 44

6.2.3 Squashing . 45

6.2.3.1 Key Generation 45

6.2.3.2 Expanding 46

6.2.3.3 Decryption 46

6.3 Comparison and Result . 46

7 CONCLUSION . 49

REFERENCES . 51

xix

xx

LIST OF TABLES

Table 6.1 Time Complexity Comparison . 47

xxi

LIST OF FIGURES

Figure 2.1 An Example of Circuit Construction [9] 6

Figure 4.1 General Overview of Constructing FHE [31] 21

Figure 5.1 StreamAddQ(x1, · · · , xm) . 32

xxii

LIST OF ABBREVIATIONS

Z Integers

Q Rational Numbers

R Real Numbers

AGCD Approximate Gratest Common Divisor

HE Homomorphic Encryption

SwHE Somewhat Homomorphic Encryption

FHE Fuully Homomorphic Encryption

xxiii

xxiv

CHAPTER 1

INTRODUCTION

Cryptography is an essential tool for information security. People have continued to

develop more complex cryptographic encryption systems, starting with simple en-

cryption systems such as shift cipher and substitution cipher [19]. The most signifi-

cant purpose of these developments is to communicate and store private information

securely. Over time, cryptography has become an interdisciplinary science, and cryp-

tographic algorithm design and development have come to an important place.

Cryptographic studies are grouped into two main categories as symmetric keys and

asymmetric keys [26]. One of the differences between the two groups is the number

of keys. While only one key is used in symmetric algorithms, two keys are used in

the asymmetric version, private and public. These keys encrypt and decrypt the data

respectively. Another significant difference is that symmetric systems are more ef-

ficient than asymmetric systems. Efficiency is an essential feature for cryptography

because the low efficiency of a highly secure design renders the system useless. To-

day, with the development of technology, much more reliable and efficient algorithms

are needed. People need these algorithms to store and process their private infor-

mation. For example, being able to perform an operation on encrypted data without

decrypting the data in the cloud system, which has been widely used, and delivering

this data securely to the other party has become an important goal for studies. As seen

in the example, the biggest problem is deciphering the encrypted data before working

on it. It means putting the data we encrypted to protect it at risk again. Researchers

have proposed Homomorphic encryption as a solid solution for this scenario.

Homomorphic encryption basically can be expressed mathematically as: Enc (p1 ∗

1

p2) = Enc(p1) ∗ Enc(p2), where p1 and p2 are two encrypted messages, and Enc

is the encryption function. Here, homomorphic encryptions can be divided into three

groups. These are; partially homomorphic (PHE), somewhat homomorphic (SwHE),

and fully homomorphic encyrption (FHE). These groups are constructed according

to the capability of encyrption algorithm [23]. Suppose that the scheme supports an

unlimited number of one operation, namely, addition or multiplication on encrypted

data. In that case, it is named partially homomorphic. If it enables both operations to

up to a certain level of complexity, somewhat homomorphic, if it allows both opera-

tions an unlimited number of times, it is named as fully homomorphic.

FHE is a popular research subject. It mainly intends to compute unlimited arithmetic

operations on encrypted data. The schemes that recommended so far are not practical

enough. Calculating many functions on ciphertext is not easy because of the big

ciphertext size. That is why this topic is ideal for studying and developing.

This thesis includes definitions, properties, applications of FHE. Some constructions

of FHE schemes based on the integers are also studied. Furthermore, the computa-

tional complexity of two algorithms, namely the DGHV scheme and Batch DGHV

scheme has been computed and their efficiency are compared based on the com-

plexities. While the DGHV scheme encrypts the one-bit message, the batch DGHV

scheme encrypts an ℓ-bit message vector m at a time. The essential purpose is to

research which option is more efficient for encrypting ℓ-bit messages. The first alter-

native is to use the DGHV scheme for ℓ-times. The second one is to use the batch

DGHV scheme one time. We conclude that for message size ℓ when security param-

eter ℓ ≤ λ3/2 using batch scheme is more efficient than using DGHV scheme.

1.1 Historical Process and Literature Review

RSA is a public-key algorithm, adversity of the factorization problem is the key point

for the security of RSA scheme. Two different prime numbers choosen in key gen-

eration step. They are named as p and q respectively. To improve security p and

q randomly designated and should have close lengths. Compute n = p.q and, n is

the reduction value of private and public keys. Compute φ(n) = (p − 1)(q − 1),

2

which is the totient of these numbers. Generate a positive integer e less then φ(n)

so, gcd(e, φ(n)) are equal to 1. Then define d, the d.e ≡ 1 in module φ(n). To en-

crypt M and create C, compute C = M e in module n and decrypt C to obtain the

message M , compute M = Cd in module n. The RSA algorithm has multiplicative

homomorphism property, so C1 = M e1 and C2 = M e
2 are two encrypted messages,

and

(C1 × C2) =M e
1 × M e

2 = (M1 × M2)
e = (C1) × (C2).

After a while, research named "privacy homomorphism" is led by designers of RSA

[21], and this system provides only additive or only multiplicative homomorphism

called as "Partially Homomorphic scheme." Goldwasser-Micali [15], Benaloh [1],

Damgård–Jurik and Paillier [27] cryptosystems can be given as additive homomor-

phic examples for the Partially homomorphic scheme.

Later, researchers were interested in the question, "Can homomorphic scheme sup-

port both additive and multiplicative homomorphism?" Nearly 30 years later, BGN

cryptosystem was presented in 2005 [3]. The scheme, while not the desired encryp-

tion system, is a significant improvement. Because it provides an unlimited number of

homomorphic addition, it supports only one multiplication. This type of scheme that

performs both operations limited times is named as SwHE. Gentry represented very

first FHE scheme in his Ph.D. thesis. [12]. He found a way called "Bootstrapping",

which can convert a SwHE scheme to a FHE scheme. Gentry uses Ideal Lattices to

design a somewhat homomorphic scheme in his breakthrough work. According to

his study, arbitrary computation can be operated on ciphertext without any decryp-

tion process. To understand the design behind Gentry’s scheme, we can begin with

the noise component on the ciphertexts. The biggest problem is noise component pro-

liferates when one operates on ciphertexts. If the noise reaches some bound, which

is dependent on the scheme, the decryption process can not be made correctly. Boot-

strapping technique decreases the noise and achieves a FHE scheme. After Gentry’s

work, theoretically, anyone can perform unlimited homomorphic arbitrary operations

on the ciphertext. The reason why it is called in theory is that there is no convenient

implementation of this scheme efficiently.

After this groundbreaking discovery, new simpler FHE schemes are presented to in-

crease efficiency and facilitate the implementation . These schemes basically can be

3

grouped as Lattice-based [13], over the integers [30], Learning with Errors Problem

based [5], and Ring Learning with Errors Problem based [6]. Among these schemes,

FHE over the integers is a remarkable candidate to work on since its arithmetic are

more straightforward than the others.

1.2 Outline

In this thesis, the FHE over the integer (DGHV) scheme was studied. Generally, our

focus is on analyses that will increase the scheme’s efficiency. In chapter 2, necessary

definitions are made to understand the subject better.

Chapter 3 demonstrates the structure of the functions that can be evaluated homomor-

phically using arithmetic circuits. And also, many real-life applications of Homomor-

phic encryption are described. These applications have been developed mainly in the

fields of health, finance, advertising, and education.

Chapter 4 describes the symmetric and asymmetric key versions of the DGHV scheme.

Then, we demonstrate why these schemes are homomorphic under addition and mul-

tiplication operations. Lastly, we give the general review of FHE schemes and a way

to convert a SwHE scheme to an FHE scheme.

Chapter 5 mentions some efficiency problems of the DGHV scheme and ways to

improve it. These are finding more efficient SwHE schemes, extending the message

size or message space, increasing the speed of bootstrapping process, eliminating

the bootstrapping procedure, eliminating the squashing process and shortening the

existing public key. We generally focus on "extending message size and message

space" solutions among them.

In chapter 6, we compute and compare the complexities of two algorithms, namely,

DGHV scheme [30] and batch DGHV scheme [7].

4

CHAPTER 2

PRELIMINARIES

This section contains explanations of some concepts that will be used later. In chap-

ter 3, we demonstrate the function’s structures that can be operated homomorphically

working with arithmetic circuits. In chapters 4 and 5, many terms and methods to

construct a FHE scheme like 3 to 2 trick, sparse subset sum problem, knapsack prob-

lem, and approximate greatest common divisor problem. Finally PHE, SwHE, and

FHE are used throughout the thesis.

2.1 Definition and Properties

In this part, some definitions and explanations are given to understand the upcoming

chapters easier. Some of the definitions given in this thesis are based on Genry’s work

[13].

Definition 2.1.1. (Approximate Greatest Common Divisor Problem (AGCD) [30])

Given polynomially many samples from Dγ,ρ(p) = {choose q $←− Z ∩ [0, 2γ/p], r $←−
Z ∩ (−2ρ, 2ρ) : output x = pq + r} p is an η-bit odd integer then, output p.

The difficulty of the SwHE scheme is based on this AGCD problem. For our scheme,

one wants to find secret value p given many values of public key member which have

the form xi = pqi + ri where |ri| is small noise.

As an example : Lets say our set is TestSeq = [399, 710, 105, 891, 402, 102, 397] the

optimum GCD is approximately 100.18867794375123.

Lemma 2.1.1. (Simplified Leftover Hash Lemma [16]) F be a family of 2-universal

5

hash functions from A to B. Assume that f R←− F and a R←− a are selected uniformly

and independently. A hash function F from A to B is a family of 2-universal hash

functions. Let’s choose f R←− F and a
R←− a. Then, (f, f(a)) is 1/2

√
|B|/|A| -

uniform over FχB .

AGCD is the main challenge behind the DGHV scheme [30].

Arithmetic circuits are an essential tool for both encryption and evaluation steps in

FHE schemes. The following two-term, namely arithmetic circuit and circuit depth,

should be understood well.

Definition 2.1.2. (Arithmetic circuits [29]) An arithmetic circuit C over the field F

and the set of variables Y (usually, Y = {y1, ..., yn}) is a acyclic directed graph as

follows. The vertices of C are called gates. All the gates in C of in-degree 0 is labeled

by either a variable from Y or a field element from F. Every other gate in C is labeled

by either × or + and has in-degree 2.

Figure 2.1: An Example of Circuit Construction [9]

In figure 2.1, we denote

• s = parity(x, y, z) = x⊕ y ⊕ z,

• c = majority(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z).

Let x = 1, y = 0 and z = 1 and the summation of x+ y+ z = 2. To implement these

problem to arithmetic circuit first we apply c = (1 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 1) = 1 and

6

then s = 1 ⊕ 0 ⊕ 1 = 0. One can see that < c, s > =< 1, 0 >, and it is interpreted

as (10)2 = (2). Note that in the Figure 2.1, A and E are XOR-gates; B, C and D are

AND-gates; F and D are OR-gates.

Definition 2.1.3. (Circuit depth) Depth of a circuit is defined as worst-case "running

time" this circuit. The depth of an input wire is 0. If a combination item has in-

puts a1, a2, ..., an at depths dp1, dp2, ..., dpn respectively, then its outputs have depth

max{dp1, dp2, ..., dpn + 1}. The depth of a combination item is the depth of its out-

puts. The maximum depth of any combination element is defined as depth of the

combination circuit. We prevented the combination circuits from including cycles as

a result the different impressions of depth are expressed explicitly.

The following definition is about a technique used for doing more efficient computa-

tion on circuit theory.

Definition 2.1.4. (Three for two Trick [20]) This method is used to more efficiently

calculate the carry bits during the addition process. Given three integer a, b, c such

that a + b + c = m + n. Here m is the bits formed by exclusive-OR of the bits of a,

b, c and n is the bits formed by the carry.

mi = ai ⊕ bi ⊕ ci

n0 = 0; ni+1 = 1 if {(ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) == 1}

= 0 otherwise

The following six definitions are most common terms used in thesis to explain what

fully homomorphic encyption is.

Definition 2.1.5. (Correct Homomorphic Decryption) The scheme for a ciphertexts

c⃗ = ⟨c1, · · · , ct⟩ satisfies ci ← Encryptε(pk,mi) is correct if the output of a de-

cryption function, which takes evaluate function and secret key as input, is equal to

outputs of t-input circuits C. It can be summarize as following

Decrypt(sk, Evaluate(pk, C, c⃗)) = C(m1, · · · ,mt).

Definition 2.1.6. (HE [30]) ε is a scheme that includes four algorithms namely,

KeyGen, Encrypt, Decrypt, Evaluate. Suppose that it is homomorphic for a class C

7

of circuits if it is correct for all circuits C ∈ C. ε is fully homomorphic if it is correct

for all boolean circuits.

Definition 2.1.7. (Compact Homomorphic Encryption) ε scheme which has four

component namely KeyGen, Encrypt, Decrypt, Evaluate is called compact if it is

bounded a predefined boundary polynomial bound(λ), and for any circuit C and ci-

phertext tuple c⃗ = ⟨c1, · · · , ct⟩ size of the output Evaluate(pk, C, c⃗) is also bounded

with bd(λ).

Definition 2.1.8. (Augmented Decryption Circuits [29]) ε is an encryption scheme

that has four components KeyGen, Encrypt, Decrypt and Evalute, and its decryption

scheme applied as a circuit. Augmented decryption circuit is a combination of two

circuits and these two circuits accept secret key and two ciphertexts as inputs. First

one carries out decryption process for two ciphertexts and adds outputs bits mod 2.

Second one again decrypts these two ciphertexts than multiplies the resulting bits

mod 2. As augmented decryption circuit is dependent only security parameter λ, it

symbolized with Dε(λ).

Definition 2.1.9. (Bootstrappable Encryption) One say that the scheme ε is bootstrap-

pable if Dε(λ) ⊆ Cε(λ). Here, ε is the homomorphic encryption scheme, Cε(λ) is a

circuits set which ε is correct, and Dε(λ) is the augmented decryption circuits.

Definition 2.1.10. (Knapsack Problem [22]) Define two sets, all elements of which

are integers, namely V al = {v1, ..., vn} and Wt : {w1, ..., wn} which symbolize val-

ues and weights related with n elements respectively. Also, given integer W, which

represents the capacity of knapsack, find the maximum value subset of Val and Wt

such that knapsack can carry items without tearing. This means that sum of the cho-

sen items’ weight must be smaller or equal to knapsack weight capacity W. As an

example: Let’s say V al : {60, 100, 120}, Wt : {10, 20, 30} and W = 50 then

solution set is S : {30, 20}

Now, we may define the following three items to figure out how we categorize homo-

morphic encryption.

Definition 2.1.11. (Partially Homomorphic Encryption) Partially Homomorphic En-

cryption(PHE) only allows a single arithmetic operation, namely addition or multi-

plication, to be performed unlimited times on encrypted data.For example, while the

8

Paillier scheme [27] is additive homomorphic, RSA [21] and Elgamal [10] systems

are multiplicative.

Definition 2.1.12. (Somewhat Homomorphic Encryption) The scheme permits for

both addition and multiplication on ciphertext, but only up to a certain complexity.

An example of this is the DGHV scheme [30], described in Chapter 4.

Definition 2.1.13. (Fully Homomorphic Encryption) The scheme permits limitless

number of addition and multiplication on ciphertext.

9

10

CHAPTER 3

HOMOMORPHIC ENCRYPTION AND ITS APPLICATIONS

In our rapidly growing and developing world, storing and managing data in cloud

systems plays an important role. In addition to processing and storing data, protecting

this data is also a substantial point. Encryption of the data before it is sent to the cloud

is a proper and logical process to keep it secure. However, deciphering the data for the

operations to be performed on it during this journey endangers the data. Therefore, it

should be encrypted homomorphically so that it can be processed even when the data

is encrypted.

In this chapter, real-life applications of Homomorphic encryption are described. These

applications have been developed mainly in the fields of health, finance, advertising,

and education.

3.1 Practical Applications for Homomorphic Encryption

In this section, applications and functions of homomorphic encryption in fields like;

health, finance, and advertisement are given. Detailed explanations of described en-

cryption algorithms are provided in the following chapter. Today, many hospitals

prefer to keep their electronic health records in the cloud instead of holding them on

their local computers. The main reasons for this are the increased storage space due

to the rising data density and the difficulty of calculating the growing data. Patient

data are encrypted to securely transport, store, and process in the cloud. These data

are often used to make statistical interpretations. Some of the most used functions

for statistical operations are: mean, standard deviation, logistical regressions. If one

11

considers these algorithms specifically, it will be sufficient to use the SwHE scheme

[24]. Note that while the averages algorithm has no multiplication, the standard devi-

ation algorithm has just one multiplication also, the logistical regressions algorithm

has more than one multiplications depending on the required accuracy.

3.2 Cloud Services

Even though cloud services reach a wide range of users, there are still questions

about data protection. This section will describe some applications that use SwHE

scheme to protect customers’ confidentiality. In all these scenarios, the data that

comes to the cloud in an encrypted way and is operated by the cloud to supply a

service to the person is considered. Two ideas to consider here, the first is to encrypt

the function itself, and the second is to encrypt the data. In the following sub-sections,

the headers will contain information about whether the data itself, the function or both

are encrypted.

3.2.1 In Healthcare: Secret data and Public functions

In the article [2], a system was suggested named Patient Controlled Encryption Sys-

tem. According to this article, patients decide who can see their results and who can

not. While this approach helps protect data, it does not help to work on it safely in the

cloud. Thanks to the implementation of FHE, it has become possible to operate on the

encrypted data on the patient side. The latest updates, warnings, and recommenda-

tions will be securely transmitted to the patient with the FHE on encrypted data. The

main functions used here are statistical functions, namely mean, standard deviation,

and logistic regression. Encrypted entries usually consist of information about our

health, such as test results and illness history. Finally, when it comes to public health,

priority is given to the protection of data rather than the preservation of function.

12

3.2.2 In Economy and Finance: Secret Data and Secret functions

In finance sector, unlike health, both data and the function that accepts encrypted data

as input are encrypted [24]. The data in this area can be company-specific confidential

information related to collaborations, warehouse activities, and investment decisions.

The confidentiality of the functions used here is as vital as the confidentiality of the

data. The information such as financial analysis and predictive product models ob-

tained by the company by spending big money becomes predictable by knowing the

function used. Thanks to the FHE, these functions can be calculated implicitly. For

example, the client uploads the encrypted function to the system (such as a statistical

program with encrypted data). Client’s public key used to encrypt transferred data.

Later the data transferred to the cloud. Finally, the cloud delivers the encrypted output

to the client, and the data can be read by using its private key.

3.2.3 Advertising and Pricing

It is not a coincidence that when you pass by the coffee shop, you receive a discount

coupon from that coffee shop, advertisements for different places on your phone on

Friday nights, and if you are a well-groomed person, you are constantly sent cosmet-

ics ads [18]. Today, advertising companies follow many different ways to attract the

attention of the consumer. Devices we use in our daily lives transmit our location, e-

mail addresses, and keywords we searched the Internet to the other party [28]. When

such conceptual data is transformed to the cloud server, it becomes available to many

companies. In this way, the advertising firm chooses the advertisement to be sent to

you with a smart strategy, not arbitrarily.

The biggest problem in the scenario described in the first paragraph is that the ap-

plication users give too much information to the other party, and FHE can be con-

sidered a solution. Namely, all private information is encrypted before passing to

server. Here the outer function is encrypted, and encrypted advertisement matched

with ser. Here the encryption of the function is not as important as in the financial

sector. Consumer’s public key is used for encrypting to whole related data and ads.

Then operations on the cloud can be made, and the consumer can decipher the adver-

13

tisement taken to see it. If cloud service providers do not want to defraud advertisers,

the system will function properly.

3.2.3.1 Some Functions with FHE

Three special functions are mentioned in the sections above. These are the mean

function, the standard deviation, and the logistic regression function. The main fea-

ture of these functions is that they contain no or a limited number of multiplication

operations, so they are functions that SwHE can be used.

• Average of k terms {pi}: as a pair (
∑

i=1,...,k pi, k), then avaragem =
∑

i=1,...,k pi

k

• Standard deviation:
√∑

i=1,...,k (pi−m)2

k

• Logistic Regression: lr =
∑

1,...,k bilri , here bi is regression coeffficient for the

variable lri , and the prediction function is g(x) = ex

1+ex

There are important things to consider when using SwHE on functions. First, param-

eters must be explicitly selected for all encryption systems. These particular choices

are determined by how many multiplications will be made in the function. Parameter

selections are essential for safety and efficiency because a very safe system may not

be efficient, and a very efficient system may not be secure. A balance must be estab-

lished between the two. In other words, as the function used in the system changes,

the selected parameters should also change.

14

CHAPTER 4

FULLY HOMOMORPHIC ENCRYPTION OVER THE

INTEGER

The chapter will explain the FHE over the integer scheme named DGHV [30] de-

signed by Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan in

detail. In addition, it will be mentioned how to turn a SwHE scheme in to a FHE

scheme in general.

4.1 Approximate Greatest Common Divisor Problem

Given a set of integers that are near-multiples of a secret integer, then the problem

is finding approximate greatest common divisor of this set, namely secret integer.

AGCD was first studied by Howgrave-Graham [17]. Further studies about AGCD

was provided by the van Dijk, Gentry, Halevi and Vaikuntanathan’s homomorphic

encryption scheme [30]. The problem in this scheme is that given polynomially many

samples from Dγ,ρ(p) = {choose q $←− Z ∩ [0, 2γ/p], r $←− Z ∩ (−2ρ, 2ρ) : output

x = pq + r} for a randomly chosen η-bit odd integer p then, output p.

4.2 Somewhat Homomorphic Encryption Scheme Over the Integer

The section explains the SwHE scheme [30]. It includes many special parameters:

First parameter is γ. It represents bit-length of the integers in public key. Second one

is η which stands for the bit-length of the secret key (it is the hidden approximate-gcd

15

of all the public-key integers). Next parameter is ρ, the bit-length of the noise. Lastly

number of integers in public key expressed as τ .

The scheme has two different variants namely symmetric and asymmetric. Although

we explain both scheme, generally we focus on public key version.

4.2.1 Symmetric Key Version of the Scheme

Here three algorithms of the symmetric key scheme, namely key generation, encryp-

tion, and decryption are explained. Moreover, we emphasize decryption algorithm to

be sure decryption works correctly, we put some restrictions on parameters.

4.2.1.1 Key Generation

p, private key, is an odd integer in some interval p ∈ [2η−1, 2η).

4.2.1.2 Encryption

One can use a system Enc(m) = pq+2r+m for encryption one bit. In this system p

is secret key that is greater than q. Also q and r are chosen as random integers. Note

that when choosing r, be careful that "2r" must be less than half of the p in absolute

value.

4.2.1.3 Decryption

One can decrypt ciphertext using the algorithm Dec(c) = (c mod p) mod 2. In the

encryption phase, it noted that "2r" must be chosen less than half of the p in absolute

value. The reason for this restriction is to ensure that the decryption is done correctly.

In the decryption phase one, first calculate modular p. If 2r+m is greater than p, the

decryption process is failed.

16

4.2.2 Asymmetric Key version of the Scheme

Turning symmetric key algorithm into public key algorithm is a simple process. De-

scribe a set of integer such that these integers are generated by "encryptions of zero".

Then choose a subset of this set and use it for public keys.

4.2.2.1 Key Generation

The private key is picked as an odd η-bit integer: p← (2Z + 1)
⋂
[2η−1, 2η). To set

public key, sample Dγ,ρ(p) = {choose q $←− Z ∩ [0, 2γ/p], r $←− Z∩ (−2ρ, 2ρ) : output

x = pq + r}. Among them, x0 should be assigned as the largest one. If it is not

the largest, then relabel the xi values. Restart the process until the remainder of x0,

denote as rp(x0), is even and x0 is odd. Then public key is a tuple of xi’s namely

pk = ⟨x0, x1, ..., xτ ⟩.

4.2.2.2 Encryption

S is a randomly chosen subset such that S ⊆ {1, 2, ..., τ}, and integer r ∈ (−2ρ
′
, 2ρ

′
),

then output c→ [m+ 2r +
∑

i∈S xi]xo

4.2.2.3 Evaluate

Cϵ is a binary circuit. This circuit has t inputs and t ciphertexts ci. Cϵ performs whole

operations like addition and multiplication over the integer and outputs the result as

integer.

4.2.2.4 Decryption

Decryption process is similar with symmetric key scheme. It outputs m using the Dec

function Dec(c) = (c mod p) mod 2.

17

4.2.3 Homomorphic operations

Both public key and symmetric key scheme have additive and multiplicative homo-

morphism. The homomorphic property defines for both version is same.

4.2.3.1 Additive homomorphism

Let c1 and c2 be two ciphertext .

c1 = q1p+ 2r1 +m1

c2 = q2p+ 2r2 +m2

c1 + c2 = (q1 + q2).p+ 2(r1 + r2) + (m1 +m2)

Note that c1 + c2 is an encryption of m1 +m2, and it is equal to m1 ⊕m2 in mod 2.

Correctness of homomorphic addition:

When we try to decrypt ciphertext c1 + c2 we must obtain message m1 + m2 if the

scheme additive homomorphic.

(c1 + c2 mod p)2 = (((q1 + q2).p+ 2(r1 + r2) + (m1 +m2)) mod p)2

= (2(r1 + r2) + (m1 +m2))2

= m1 +m2

Note that additive homomorphic decryption works only the noise parameter 2(r1 +

r2) < p.

4.2.3.2 Multiplicative homomorphism

Let c1 and c2 be two ciphertext. If one take r′ = 2r1r2 + r1m2 + r2m1 and q′ =

q1q2p+ 2q1pr2 + q1pm2 + 2r1q2p+m1q2p then, c1c2 can be expressed as following.

c1 = q1p+ 2r1 +m1

c2 = q2p+ 2r2 +m2

c1.c2 = (q1q2p+ 2q1pr2 + q1pm2 + 2r1q2p+m1q2p).p+ 2(2r1r2 + r1m2 + r2m1) + (m1.m2)

c1.c2 = q′p+ 2r′ +m1m2

18

Here, c1c2 is an encryption of m1m2. And note that noise becomes twice larger.

Correctness of homomorphic multiplication:

When we try to decrypt ciphertext c1.c2 we must obtain messagem1.m2 if the scheme

multiplicative homomorphic.

(c1.c2 mod p) mod 2 = ((q′p+ 2r′ +m1m2) mod p) mod 2

= (2r′ +m1.m2) mod 2

= m1.m2

Note that multiplicative homomorphic decryption works only the noise parameter

2r′ < p.

4.3 General review of FHE scheme

In a FHE scheme, one can do limitless operations on encrypted data. Binary circuits

are used for representing these operations (mainly AND, XOR, NAND gates). The

inputs of the circuit are ciphertexts ψ1, ψ2, ..., ψt. Unlike the three traditional public-

key algorithm elements, namely key generation, encryption, and decryption, a homo-

morphic scheme also needs an extra (possibly randomized) Evaluate algorithm. The

inputs of Evaluate algorithm are public key, permitted circuit, and ciphertext tuples

Ψ = ⟨ψ1, ψ2, ..., ψt⟩. These tuples of ciphertexts are used for input of the arithmetic

circuit. The output of the Evaluate algorithm is a ciphertext ψ so that ψ is the cipher-

text of C(m1, ...,mt) under public key, where mi is the message bit matching to the

ciphertext of ψi

4.3.1 How to Construct a FHE Scheme

The primary problem operation on ciphertext is enormous noise. Every homomor-

phic addition and multiplication operations raise the noise significantly. The SwHE

scheme supports a limited number of operations on encrypted text. The beginning

step for constructing a FHE scheme is constructing a SwHE scheme. To illustrate, if

the noise bit size is k let noise threshold as kt, in that situation it takes log2t levels of

19

multiplication to caught the bound.

One can see that to construct a scheme letting unlimited operation on ciphertext, and

we need a solution to minimize noise. Gentry suggests a procedure called "ciphertext

refresh" in his Ph.D. thesis [12]. In this procedure, the decryption circuit has the input

bits of secret key and ciphertext. Each of these bits is encrypted with a different public

key. If the decryption circuit can handle the noise, the output of the same plaintexts is

different than each other. When the decryption polynomial’s degree is small enough,

the noise of new ciphertexts will be enough to do the homomorphic operation again.

The augmented decryption circuit is a circuit augmented by logic gates. Generally,

these gates are chosen as AND and XOR because these gates have functional com-

pleteness property [11]. This means it is possible to implement all logic gates with

AND and XOR gates. To summarize, if the SwHE scheme can do arbitrary opera-

tions on encrypted plaintext, this means that the SwHE scheme can handle augmented

decryption circuits.

The second question is, while SwHE can overcome AND and XOR gates, the de-

cryption circuit can do the same? The answer is NO. To make it possible, one can

use a step named bootstrapping. One must first use the "squashing method" to make

the decryption circuit bootstarappable. This means that the decryption polynomial

is small enough, and our SWHE can do many arbitrary operations on the ciphertext.

Eventually, constructing a FHE scheme is completed successfully.

4.3.2 A General Explication

Now, in figure 4.1 one can see a general explanation of constructing a FHE scheme.

20

Figure 4.1: General Overview of Constructing FHE [31]

The explanation is formed as a module that was applied in Gentry’s scheme. To gen-

erate a FHE scheme, one can follow all possible paths on the diagram. In the figure,

while the solid lines show the Gentry scheme, dotted lines demonstrate alternative

ways for constructing FHE. There are many challenges that will be explained in this

figure.

• If decryption circuit can not be handled by SwHE then one must use a technique

called "squashing". But this method include a very strong assumption namely

"sparse subset sum problem" which is the most engrossing phase in Genry’s

solution.

• In a “leveled” FHE scheme, for refreshing the ciphertext, how many public keys

to use depends on the depth of the circuit linearly unless one can choose to use

same public key for all the levels. This is called "circular security".

• Gentry exhibited bootstrapping theorem to obtain FHE [12]. The theorem says

that if the given a SwHE scheme can evaluate its own decryption circuit, then

21

the scheme can be converted it into a “leveled” FHE scheme. Operating the

decryption function on ciphertext homomorphically using a encrypted secret

key refreshes the ciphertext so decreases the noise.

4.4 Converting DGHV to FHE

The section includes the Gentry’s way [12] to construct a FHE scheme from SwHE

scheme over the integer. As one remembers decryption function is represented as

Dec(c) = (c mod p)2 , but it’s too hard to implement the modular system as a

boolean circuit. Then one can use the trick Dec(c) = [c− p⌊c/p⌋]2 . Here, p is

chosen as prime integer, so it is equal to 1 in modulo 2. However, the division is

still a hard operation for the boolean circuit. Hence we use the "squash the decryp-

tion circuit." method suggested by Gentry [13]. Because of using the method, some

additional information about the secret key are added to the public key. After the

addition, new ciphertext is called "post-processed." One can decrypt these ciphertexts

more accurately than the standard ones, making the scheme bootstrappable. How-

ever, this method has advantages as well as disadvantages. One of them is adding

some information that can help the attacker break the scheme, and the other one is

adding something that increases the size of the ciphertext.

4.4.1 Squashing Step

New parameters namely κ, θ and Θ were added. These are functions of λ (security

parameter). To be more precise, we operate κ = γη/ρ, θ=λ, and Θ= ω(κlogλ). Take

secret key public key pk∗ and sk∗ = p from the original SwHE schema ε∗, a set

y = {y1, ..., yθ} of rational numbers in [0, 2) with κ bits of precision is added to

public key. In this step we use the "Sparse Subset Sum Problem". There is a sparse

subset S ⊂ {1, ...,Θ} of size Θ with
∑

i∈S yi ≈ 1/p (mod 2). Finally, the secret key

is changed with the indicator vector of the subset S.

22

4.4.1.1 Key Generation

Generate sk∗ and pk∗ as in the SwHE scheme, and set xp ← ⌊2κ/p⌋. A Θ-bit random

vector s = {s1, ..., sΘ} is chosen such that its hamming weight is θ. Then, denote a

set with S = {i : si = 1}. For i = {1, ...,Θ}, random integers ui ∈ Z ∩ [0, 2κ+1)

are chosen, subject to the rule that
∑

i∈S ui = xp (mod 2κ+1). Then, set yi = ui/2
κ

and y = {y1, ..., yΘ}. Note that the each yi ∈ [0, 2), with κ bits of precision after

the binary point. Also the chosen yi’s verifies that, [
∑

i∈S yi]2 = 1/p −△p for some

|△p| < 2−κ. The outputs are secret key sk = s and public key pk = (pk∗, y).

4.4.1.2 Encrypt and Evaluate

Ciphertext c∗ is created first, and set zi ← [c∗yi]2 for i ∈ {1, ...,Θ},also keep zi as

n = [logθ] + 3 bits of precision after the binary point.

The outputs are c∗and z = ⟨z1, ..., zΘ⟩

4.4.1.3 Decryption

The output is m′ ← [c∗ − ⌊
∑

i sizi⌉]2

4.4.2 Bootstrapping

Bootstrapping is one of the important part of the FHE structure. As in the below the-

orem, thanks to bootstrapping part decryption circuit has been a subset of permitted

circuits.

Theorem 4.4.1. ([13]) Assume that ε is the scheme above at the same time Dε is the

set of augmented (squashed) decryption circuits. Finally, let Dε ⊂ C(Pε).

Actually, this theorem says that ε is bootstrappable. The purpose is to state the mod-

ified decryption equation m′ ← [c∗ − ⌊
∑

i sizi⌉]2 as a permitted polynomial, and

demonstrate that this polynomial is computed with a polynomial-size circuit. Re-

member that zi ∈ Q, and 0 ≥ zi > 2, in binary representation with n = ⌈logθ + 3⌉

23

bits of precision and also, c∗ ∈ Z. Moreover, si’s can be chosen as 0 or 1, and weight

of the vector {s1, ..., sΘ} is equal to θ. Note that our parameters
∑
sizi is within 1/4

of an integer.

We separate operation phase into three parts:

1. Set ai ← sizi for i ∈ {1, ...,Θ}(i.e., if si = 1 then si = ai if not ai = 0). One

can see that because zi ∈ Q, and 0 ≥ zi > 2 also ai ∈ Q, and 0 ≥ zi > 2.

2. Depending the condition
∑

i ai =
∑

j wj mod 2, generate different n + 1

rational number {wj}nj=1 with less than n bits of precision, from the set of

{ai}Θi=1.

3. Finally, the output is c∗ −
∑

j wj mod 2

For item one, one can easily express it using multiplication gates with one level sub-

circuit. Nevertheless, it is too complicated to represent the other two items with one

sub-circuit level. For the second part, one can use the three-for-two trick [20] with

a constant-depth circuit. This method can be used to convert three numbers in to

two. Converted two numbers can be maximum 1 bit longer. Here, note that to apply

this trick, bit length of the inputs are not important. Eventually, one can say that

summation of these three numbers is equal to two numbers. To obtain two integer s1

and s2 which is [s1+s2 =
∑k

i=1 ri] this trick can be applied maximum of ⌊log3/2k+2⌉
times and conclude that minimum depth is d ≤ 2⌈log3/2k+2⌉ < 8k1/log(3/2) < 8k1.71.

Remember that our parameter
∑
s1 + s2 is 1/4 of an integer and, our final sum is∑

s1 + s2 mod 2. This implies that one can compute this value using a 4-degree

multivariate polynomial.Now, the total degree of a circuit that computes [s1 + s2 =∑k
i=1 ri] can be maximum 4× 8k1.71 = 32k1.71.

24

CHAPTER 5

EFFICIENCY PROBLEM OF DGHV SCHEMA

In this chapter, one can find the main challenge about the FHE schema over Integers

and current strategies to tackle them.

We illustrate the FHE schema over the ıntegers on previous chapters. When we look

at the schema , it is include 3 phases.

1. Describe a SwHE schema

2. Squashing the schema

3. Bootstrapping

As one can see on the previous chapters these three stages involve repetitive and heavy

processes that will reduce efficiency. We can group the studies carried out to increase

efficiency as follows:

• finding more efficient SwHE schemes,

• extending the message size or message space,

• to speed up the bootstrapping process [8],

• eliminate the Bootstrapping procedure [4],

• eliminate the Squashing process [14],

• decrease the public key’s size.

25

Now, we summarize the main studies about above headers, and we carry on with

explaining the second item "extending the message size or message space" in detail.

5.1 Extending the message size or message space

The DGHV scheme suggested by Dijk, Gentry, Halevi and Vaikuntanathan [30] al-

lows only 1 bit encryption for 1 encryption cycle and also use Z2 for the message

space. This means that one can encrypt only 0 or 1 for a encryption cycle.

There are mainly two approaches to extending the message spaces or message sizes

over the DGHV scheme. First one is a process called Batching, i.e. a procedure that

allows to process a input vector homomorphicly as a single output. The second one

is using non-binary message spaces instead of Z2.

5.1.1 Batch FHE Over the Integers

In the DGHV scheme, one can encrypt a message m using an algorithm.

c = q.p+ 2r +m

p is the private key and q and r are random integers and q is much bigger than r.

Following decryption algorithm can be used to recover m.

m = [c mod p] mod 2.

To turn DGHV scheme into a Batch scheme, one can use Chinese Remainder Theo-

rem [7]. Thanks to this theorem mi which is a message contain multiple bits can be

encrypted as a single ciphertext. One can see the form of ciphertext which is batched

with using CRT as following

c = CRTq0,p0,···,pl−1
(q, 2r0 +m0,··· , 2rl−1 +ml−1).

In above ciphertext q0, p0,··· , pl−1 are all co-prime integers. To Decrypt mi message

bit vector we use the same algorithm mi = [c mod pi] mod 2 for all 0 ≤ i ≤ l − 1.

Note that we define ciphertext c as

c = CRTq0,p0,···,pl−1
(q, a0,··· , al−1).

26

Here, u is chosen under the restriction with 0 ≤ u < q0 ×
∏l−1

i=0 pi such that for all

0 ≤ i < l

u ≡ q (mod q0),

u ≡ ai (mod pi).

Also, this technique help us not only encrypt a bit but also elements form ZQ. One

can choose public elements as Q0,· , Ql−1 and, encrypt (m0,··· ,ml−1) chosen from

ZQ0×, · · · , ZQl−1
respectively. Now packing l plaintext into a single ciphertext looks

like

c = CRTq0,p0,···,pl−1
(q,Q0r0 +m0,··· , Ql−1rl−1 +ml−1).

We choose q as random integer modulo q0 and ri’s small integers. As we indicate

earlier, for decryption phase use same algorithm to find messages.

mi = [[c mod pi] mod Qi]

One can pick Qi’s as pairwise co-prime and, ın this case isomorphism theorem may

be used to view batch scheme as a SwHE scheme on ZQ. To more specific, according

to isomorphism theorem i.e. Z∏
Qi
∼=
∏
ZQi

, homomorhic encryption supporting

arithmetic operation on ZQ. We can think that Q is equal to production of all Qi’s.

Turning this into a public key scheme is so similar with DGHV’s phase.

c =

[
l−1∑
i=0

mi.x
′

i +
∑
i∈S

xi

]
x0

We choose two integers x′
i and xi in addition to public keys. Note that x′

i mod pj =

Qjr
′
i,j + δi,j and xi mod pj = Qjr

′
i,j for all i, j. A FHE scheme can be obtained from

given scheme using Gentry’s technique if one choose all Qi’s are same and equal to

2 for 0 < i < l − 1. To conclude message space Z2 is extended as (Z2)
k.

5.1.1.1 Key Generation

Generate η-bit pj’s, which are distinct primes, for j ∈ [0, l) and compute π by multi-

plying pj’s. Then, define the public key parameter x0 = q0.π where q0 is a 2λ
2-rough

integer chosen the set q0 ← Z ∩ [0, 2γ/π]. Note that 2λ2-rough means there is no

prime factors of q0 smaller than 2λ
2 . Be sure that gcd(Qj, x0) = 1 for 0 ≤ j < l.

27

Choose the integers xi and x′i with a quotient by π uniformly and independently dis-

tributed in Z ∩ [0, q0), and with the specified distribution modulo pj for j ∈ [0, l).

i ∈ [1, τ], xi mod pj = Qjri,j , ri,j ← Z ∩ (−2ρ, 2ρ),

i ∈ [1, ℓ− 1], x′i mod pj = Qjr
′
i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ),

Finally sk = (pj){0≤i≤l−1} and pk = {x0, (x′i){0≤i≤l−1}, (Qi){0≤i≤l−1}, (xi){0≤i≤τ}}

5.1.2 Encryption

For any m = (m0, · · · ,ml−1) with mi ∈ ZQi
, choose a random binary vector b =

(bi){1≤i≤τ} ∈ {0, 1}τ . Then, ciphertext can be found by using the folowing encryption

algorithm.

c =

[
l−1∑
i=0

mi.x
′
i +

τ∑
i=1

bixi

]
x0

5.1.3 Decryption

Output m = (m0, ...,ml−1) where mj ← [c mod pj]Qj
.

5.1.4 Addition and Multiplication

Add(pk, c1, c2): output c1 + c2 mod x0.

Mult(pk, c1, c2): output c1 ∗ c2 mod x0.

5.1.5 Making The Scheme Fully Homomorphic

Making a scheme Fully Homomorphic, Gentry’s technique [30] is used with batch

settings. The purpose of manipulating the decryption circuit is to obtain a polynomial

with smaller degree.

Include a set y⃗ = {y1, · · · , yΘ} to the public key. Here yi ∈ Q, and 0 ≤ yi < 2 with

κ bits of precision. The purpose is to find a sparse subset Sj ⊂ [0,Θ − 1] of size Θ

28

such that
∑

{i∈Sj} yi ≈ 1/pj (mod 2).

5.1.5.1 Key Generation

Addition of private key and public key set xpj ← ⌊2κ/pj⌉. Pick at random a Θ-bit

vector s⃗j = ⟨sj,0, · · · , sj,Θ−1⟩ with hamming weight θ for 0 ≤ j < l. Choose a

ui ∈ [0, 2κ+1), where i ∈ [0,Θ − 1] dependent to the condition that
∑Θ−1

i=0 uisj,i =

xp (mod 2κ+1). Define y⃗i = {y0, · · · , yΘ−1} and yi = ui/2
κ. Thus each yi verifies

that for some |ϵj| < 2κ,

1/pj =
Θ−1∑
i=0

sj,i.yi + ϵj mod 2.

Finally output sk = (s0, ..., sl−1) and pk = (pk∗, y0, ..., yΘ−1) .

5.1.5.2 Expanding

Take ciphertext c∗ generated in section 5.1.2. Then create zi ← [c∗ . yi]2 for i ∈
[0,Θ− 1], with n = ⌈log2(θ + 1)⌉ bits of precision after the binary point for each zi.

Then, output the ciphertext c∗ and z = (zi){i=0,··· ,Θ−1}.

5.1.5.3 Decryption

Lastly output the message m = (m0, · · · ,ml−1) with

mj ←

[
⌊
Θ−1∑
i=0

sj,i.zi⌉

]
2

⊕ (c mod 2).

5.1.6 FHE Over the Integers for Non-Binary Message Spaces

As we know about previous chapters DGHV scheme has message space Z2 for m ∈
Z2 and ciphertext c = pq + 2r + m. In algorithm p is a private prime integer and

r is a small noise. To find message m we use an easy decryption algorithm m =

(c mod p) mod 2 = c − p . ⌊c/p⌉ mod 2. In squashed scheme, we find message m

29

using the following algorithm.

m ← (c mod 2)⊕

(⌊
Θ∑
i=1

sizi

⌉
mod 2

)
In this algorithm (s1, · · · , sΘ) ∈ {0, 1}Θ is private key, and zi = (zi,0.zi,1, · · · , zi,L)2 ∈
R, the equation

Θ∑
i=1

sizi ≈ c/p

As Gentry mentioned in his article [12], there are 2 circuits.

1. First circuits for j ∈ [0, L] calculates Wj =
∑Θ

i=1 sizi,j as following.

Θ∑
i=1

sizi = W0 + 2−1W1 + · · ·+ 2−LWL

2. Second one calculates a and b using 3-to-2 trick repetitively.

W0 + 2−1W1 + · · ·+ 2−LWL = a+ b mod 2

To calculate Wj one needs to use half adders for sum and carry. Polynomials

are used for such calculations. Although finding polynomial is easy for sum

part , it is too hard for carry part in non binary message spaces. This is the main

explanation why DGHV scheme use Z2 message space for turning into a FHE

scheme. Because all Wj is smaller than securiy parameter λ, one can easily

say first circuits multiplicative degree is at most λ. The second circuits has a

multiplicative degree O((logλ)2) which is exact degree of it.

5.1.6.1 Q-ary Half Adder

As mentioned above chapters, there is a way to extend message space Z2 to ZQ where

Q is a prime. In article [25] the Batch DGHV for non-binary message space scheme

includes a part of finding function that express carries.

While c is carry and s is sum for x, y ∈ ZQ, then

x+ y = (c, s)Q = c × Q+ s.

One can observe that s = x + y mod Q, and fcarry,Q(x, y) denoted as lowest degree

polynomial for carry c.

30

Theorem 5.1.1. fcarry,Q(x, y) is a polynomial that defined over ZQ as following.

fcarry,Q(x, y) :=

Q−1∑
i=1

(
x

i

)
Q

(
y

Q− i

)
Q

This function has total degree Q. Then one can say that for x, y ∈ ZQ

c = fcarry,Q(x, y) mod Q

Theorem 5.1.2. The polynomial fcarry,Q(x, y) has the lowest degree among all func-

tions h(x,y) over ZQ satisfying that the equation

c = h(x, y) mod Q

5.1.6.2 Low-Degree Circuits for Sum of Integers

Define ai = (ai,1, · · · , ai,n)Q for i = 1, · · · ,m, and a circuit which is computes

a1 + · · ·+ am mod Qn.

A = a(i,j)i,j is used as a matrix representation of ai = (a1, · · · , am)Q, so one can

say that matrix A is an m × n matrix. Moreover, StreamAddQ(x1, · · · , xm) for

x1, · · · , xm ∈ ZQ is an algorithm that consists of the following steps.

As one can see that for (sm, (c2, · · · , cm))← StreamAdd(x1, · · · , xm), and

x1 + · · ·+ xm = sm +Q× (c2, · · · , cm).

31

Figure 5.1: StreamAddQ(x1, · · · , xm)

In above ,an algorithm StreamAdd which can compute sum of integers is defined.

Next, MatrixAdd algporithm is shown for m× n matrix A = (ai,j)i,j .

To more specify,

B =



· · · , αn−1

· · · , β2,n

. .

. .

· · · , βm,n


, αn ← (StreamAddQ)←



· · · , a1,n

. .

. .

. .

· · · , am,n


= B

A matrix B shown as (B = (bi,j, αn) ← MatrixAddQ(A) for i = 1, · · · ,m and

bi = (bi−1, · · · , bi,n−1, 0)Q, and also one can realized that

a1 + · · ·+ am ≡ (b1 + · · ·+ bm) + αn(modQ
n)

As a last part, an algorithm FinalAddQ(A) is defined following.

32

Then, A is the matrix which is representation of sequence (a1, a2, · · · , am) and also

(d1, d2, · · · , dn) ← MatrixAddQ(A). One can see that below theorems hold due to

degfcarry,Q = Q.

Theorem 5.1.3. (d1, · · · , dn)Q = a1 + a2 + · · ·+ am mod Qn.

Theorem 5.1.4. There is a polynomial fQ,i(x1,1, · · · , xm,n) defined in ZQ field such

that it satisfies two items.

• deg fQ,i = Qn−i

• di = fQ,i(a1,1, · · · , am,n) mod Q

5.1.7 Batch SwHE Over the Integers for Non-Binary Message Spaces

In previous section, fully homomorphic encrytion scheme for non-binary message

space is demonstrated. In this one, Batch SwHE scheme over non binary message

space M = Zh1
Q1
× · · · × Zhk

Qk
is explained. Here, k ≥ 1, hj ≥ 1 and Q1, · · · , Qk are

distinct primes. As demonstrate this with notations

I := {(i, j) | i, j ∈ Z, 1 ≤ i ≤ k, 1 ≤ j ≤ hi}.

33

5.1.7.1 Key Generation

Select pi,j and Qi′ to be distinct from each other such that pi,j for (i, j) ∈ I is chosen

random and uniformly, and qo is co-prime to all pi,j and Qi′ .

q0 ←

1, 2γ/ ∏
(i,j)∈I

pi,j ∩ROUGH(2λ
2

)


In the upper equation, ROUGH(2λ

2
) represents a set does not have integers which

have no prime factors less than 2λ
2 .

N := q0
∏

(i,j)∈I

pi,j

To continue, more parameters must be chosen. Select two parameters namely eε;0 and

eε;i,j for ε ∈ {1, · · · , τ} and (i, j) ∈ I by

eε;0 ← [0, q0) ∩ Z, eε;i,j ← (−2ρ, 2ρ) ∩ Z.

xε is integer that chosen from (−N/2, N/2] such that

xε ≡ eε;0 (modq0), xε ≡ eε;i,j Qi (mod pi,j) for (i, j) ∈ I.

Likewise, for (i, j), (i′, j′) ∈ I , select e′i,j;0 and ei,j;i′,j′ by

e′i,j;0 ← [0, q0) ∩ Z, ei,j;i′,j′ ← (−2ρ, 2ρ) ∩ Z.

x′i,j is integer that chosen from (−N/2, N/2] such that

x′i,j ≡ e′i,j;0 (modq0),

x′i,j ≡ e′i,j;i′,j′ Qi′ + δ(i,j),(i′,j′) (mod pi′,j′) for (i
′, j′) ∈ I.

Here δ(i,j),(i′,j′) is kronecker delta where for i = i′ and j = j′ its value is equal to

1, for the other cases its value is equal to 0. Lastly, publish public keys set contains

N, xε, x
′
i,j and output the private key sk existing every pi,j .

5.1.7.2 Encryption

There is a message m⃗ = (mi,j)(i,j)∈I ∈ M , to define encrypted message use below

algorithm Enc(pk, m⃗). In this algorithm T denotes random subset of {1, 2, · · · , τ}
as

c :=
∑

(i,j)∈I

mi,jx
′
i,j +

∑
ε∈T

xε Mod N ∈ (−N/2, N/2] ∩ Z.

34

5.1.7.3 Decryption

There is a ciphertext c, to output the message m⃗ ∈M use below algorithmDec(sk, c).

m⃗ := ((c mod pi,j)Qi
)(i,j)∈I

5.1.7.4 Evaluation

FunctionEval(pk, f, c1, · · · , cn), has an inputs public key pk,a polynomial f includes

integer coefficient and ciphertext c1, · · · , cn, seen below

c∗ := f(c1, · · · , cn)Mod N.

5.2 Batch FHE scheme: Bootstrapping for Large Plaintext

In this section bootstrapping procedure is explained for Batch SwHE scheme in 5.1.3.

5.2.1 Squashed Scheme

In this step, the primary purpose is to decrease the multiplicative degree of the de-

cryption circuit for performing the bootstrapping phase correctly. As in the previ-

ous schemes, one can apply the same steps with DGHV scheme [30] to achieve the

squashed method. The next session will explain how extra parameters κi, θi, Θi and

Li are chosen.

5.2.1.1 Key Generation

In this step, private and secret keys are produced by KeyGen algorithm. Choose a

subset Π of Sh1 × ... × Shk
that includes an id permutation, generating the group

itself. Then, choose a Θi-bit vector which is chosen randomly with hamming weight

θi, and for each (i, j) ∈ I by (si,j;1, ..., si,j;Θi
) ∈ {0, 1}Θi . After that, define the

Xi,j := ⌊Qi
κi .(pi,j Mod Qi)/pi,j⌉. To define a new parameter ui,j , choose i ∈ [1, k]

35

and 1 ≤ l ≤ Θi, and it is expressed as ui,l ← [0, Qκi+1
i) ∩ Z in such a way that for

1 ≤ j ≤ hi,
Θi∑
l=1

si,j;lui,l ≡ Xi,j (mod Qκi+1
i)

While σ = (σ1, ..., σk) ∈ Π, produce

vσl ← Enc(pk, m⃗l
σ) for 1 ≤ l ≤ Θmax,

here the message m⃗l
σ = (mσ

l;i,j)(i,j)∈I ∈M is described by

if l ≤ Θi m
σ
l;i,j = si,σi(j);l, otherwise mσ

l;i,j = 0.

Finally, demonstrate public key pk* including pk,Π, ui,l, vσl and output the private

key sk* formed with each si,j;l.

5.2.1.2 Encrytion and Evaluation

Enc∗(pk∗, m⃗) and Eval∗(pk∗, f, c1, ...cn) functions are same in the Batch SwHE

scheme.

• Encryption : There is a plaintext m⃗ = (mi,j)(i,j)∈I ∈ M , to define ciphertext

c use below algorithm Enc(pk, m⃗). In this algorithm T denotes random subset

of {1, 2, · · · , τ}.

c :=
∑

(i,j)∈I

mi,jx
′
i,j +

∑
ε∈T

xε Mod N ∈ (−N/2, N/2] ∩ Z

• Decryption : Function Eval(pk, f, c1, · · · , cn), has an inputs public key pk,a

polynomial f includes integer coefficient and ciphertext c1, · · · , cn, seen as fol-

lowing.

c∗ := f(c1, · · · , cn)Mod N

5.2.1.3 Decryption

To find the message bits first compute zi,l for 1 ≤ i ≤ k and 1 ≤ l ≤ Θi as following.

zi,l := ((c . ui,l/Q
κi
i mod Qi) mod Li)

36

Hence, output the message bits mi,j for (i, j) ∈ I

mi,j := c−

⌊
Θi∑
l=1

si,j;lzi,l

⌉
mod Qi

Observe that, the main difference between Batch SwHE scheme and Batch FHE is due

to the ui,l parameter included in the new public key. Also these parameter subjects to

parameter si,j;l.

37

38

CHAPTER 6

TIME COMPLEXITIES OF ALGORITHMS

In this chapter, one can find the calculation of time complexities of two algorithms,

namely the DGHV scheme [30] and Batch DGHV scheme [7], in detail.

Some of the parameters used during the calculations and their explanations are given

below and also, all parameters are expressed in terms of the security parameter λ.

First parameter is γ. It represents bit-length of the integers in public key. Second one

is η which stands for the bit-length of the secret key (it is the hidden approximate-gcd

of all the public-key integers). Next parameter is ρ, the bit-length of the noise. Lastly

number of integers in public key expressed as τ . These parameters should be chosen

under the following limitations:

ρ = ω(log λ), in order to thwart brute-force attacks on the noise;

η ≥ ρ.Θ(λlog2 λ), to compute the “squashed decryption circuit” to provide homo-

morphism for deep enough circuits.

γ = ω(η2logλ), to protect against many types of lattice-based attacks on the underly-

ing AGCD problem.

τ ≥ λ+ ω(log λ), to apply the leftover hash lemma in the reduction to AGCD.

Moreover, a appropriate element set to remember during computations is ρ = λ,

ρ′ = 2λ, η = Θ̃(λ2), γ = Θ̃(λ5) and τ = γ + λ.

Note that to create public keys following distribution is used as following.

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p], r ← Z ∩ (−2ρ, 2ρ) : output x = pq + r}

39

One can easily see that the distribution is efficiently sampleable.

6.1 Time complexity of DGHV scheme

This section includes the time complexity calculations of all parts of the fully homo-

morphic DGHV schemes, namely Key Generation, Encryption, Squashing respec-

tively.

6.1.1 Key Generation

The private key p is chosen randomly in p ← (2Z + 1) ∩ [2η−1, 2η]. For the public

key, sample xi ← Dγ,ρ(p) for i = 1, · · · , τ .

xi = p ∗ qi + ri

First, we compute complexities of τ multiplications. We multiply η- bit secret key

with (γ − η)-bit qi’s. The cost can be expressed as O(ητ(γ − η)). Then, we compute

complexities of τ addition between (p ∗ qi)’s and noise parameter ri. Note that, after

the multiplication we can set length of (p ∗ qi) as γ-bit. The cost of τ addition can

be expressed as O(τγ). After using the convenient parameter set, the total cost is

Õ(λ12).

6.1.2 Encryption

Choose a bit m ∈ {0, 1} and a random subset S such that S ⊆ {1, 2, ..., τ} and a

random integer r ∈ (−2ρ
′
, 2ρ

′
), then output the ciphertext c as

c→ [m+ 2r +
∑
i∈S

xi]x0.

In this step we compute complexities of τ additions. We can take size of the set S as

τ because we thought the worst case scenarios. We add γ-bits xi’s with each others.

Note that, while first, we add two γ-bits xi, for the second addition we add γ-bit and

(γ + 1)-bit, and we add γ-bit and (γ + τ − 1)-bit for the τ th one. Then, cost can

be expressed as Õ(γτ). After using the convenient parameter set, the total cost is

Õ(λ10). Note that, after the reduction ciphertext is smaller than x0 .

40

6.1.3 Squashing

In this step, extra tree parameters κ, θ, Θ are added to scheme. Note that all of them

are functions of λ. Here parameters used as κ = γη/ρ′, θ = λ, and Θ = ω(κ.logλ).

To use the size-reduction optimization, it is sufficient to use κ = γ+2. Thanks to this

choice, Θ is much more smaller. A private key sk∗ = p and public key pk∗ are taken

from the original scheme described in section 6.1.1. Then a set y⃗ = {y1, · · · , yΘ}
is added to the public key. Here yi ∈ Q, and 0 ≤ yi < 2 with κ bits of precision.

The purpose is to find a sparse subset Sj ⊂ [0,Θ − 1] of size Θ such that
∑

{i∈Sj}

yi ≈ 1/pj (mod 2).

6.1.3.1 Key Generation

Along with the private key sk∗ = p and public key pk∗, an adition item xp should be

set as following.

xp ← ⌊2κ/p⌉

To generate xp we need just 1 division. As we mentioned in section 6.1.3, using

κ = γ+2 is sufficient. Then our complexity isO(η(γ+2)). After using the convenient

parameter set, the total cost is Õ(λ7), and new length of xp is equal to (γ − η + 2).

Then, a Θ-bit vector s⃗ = ⟨s1, · · · , sΘ⟩ randomly chosen with hamming weight θ

and a set denoted as S = {i : si = 1}. For i = {1, ...,Θ}, random integers ui ∈
Z ∩ [0, 2κ+1) are chosen, according to the following rule.∑

i∈S

ui = xp (mod 2κ+1)

For satisfying the condition, we need to do Θ addition. We add (κ+ 1) bits ui’s with

each others. Note that, while first we add two (κ+ 1)-bits ui, for the second addition

we add (κ + 1)-bit and (κ + 2)-bit, and we add κ + 1-bit and (κ + Θ)-bit for the

Θ th one. Than cost can be expressed as Õ(Θ(κ + 1)). After using the convenient

parameter set, the total cost is Õ(λ10). it should be noted that no need to compute

cost of reduction because reduction in 2κ+1 is just taking first two bits of result of

summation. Finally, set yi = ui/2
κ and y⃗ = {y1, · · · , yΘ}. To compute yi’s, we need

κ+1 addition and κ+1 multiplications. (Because the yi is a positive number between

41

[0,2) with κ bits of precision after the binary point). Then, cost can be evaluated as

O(Θ(κ+ 1)). Furthermore, after using the convenient parameter set, the total cost is

Õ(λ10).

6.1.3.2 Encrypt and Evaluate

Take ciphertext c∗ generated in section 6.1.2. Then create zi for i ∈ {1, · · · ,Θ}„also

keep zi as n = [logθ] + 3 bits of precision after the binary point.

zi ← [c∗ . yi]2

To create zi’s, we need to do Θ multiplications. Note that the each yi ∈ [0, 2), with

κ bits of precision after the binary point. It means we can take length of the yi’s as

(κ + 1)-bit. Furthermore, length of the c∗ is equal to γ-bit as implied in the section

6.1.2. Thus the complexity can be expressed as O(Θ ∗ (κ + 1) ∗ γ). After using the

convenient parameter set, the total cost is Õ(λ15).

6.1.3.3 Decryption

Lastly, output the message as following.

m′ ← [c∗ − ⌊
∑
i∈S

si.zi⌉]2

In this step, main cost originates from (Θ + 1) addition. Here length of zi is taken as

n+1 bit for n = ⌈logθ⌉ + 3. Then, cost can be expressed as O(Θ ∗ (n)). After using

the convenient parameter set, the total cost is Õ(λ5).

6.2 Time complexity of Batch DGHV scheme

This section includes the time complexity calculations of all parts of the fully ho-

momorphic batch DGHV schemes, namely Key Generation, Encryption, Squashing,

respectively.

42

6.2.1 Key Generation

Generate η-bit pj’s, which are distinct primes, for j ∈ [0, l) and compute π by mul-

tiplying pj’s, π ← pi.π. To compute π, we need to do ℓ − 1 multiplication. As

mentioned in beginning of the chapter 6, length of π equal to η. Than,cost can be

expressed as O(η2(ℓ− 1)2). After using the convenient parameter set, the total cost

is Õ(λ4(ℓ− 1)2). Let us define the public key element x0 = q0.π where q0 is cho-

sen the following set q0 ← Z ∩ [0, 2γ/π]. To compute x0, we need to do just 1

multiplication with (ℓ − 1)η-bit π and (γ − (ℓ − 1)η)-bit x0. Our cost is equal to

O(η2(ℓ − 1)(γ − (ℓ − 1))). After using the convenient parameter set, total cost can

be expressed as Õ(λ7(ℓ− 1)− λ4(ℓ− 1)2).

For the next step of key generation, choose the integers xi and x′i with a quotient

by π uniformly and independently distributed in Z ∩ [0, q0), and with the following

distribution modulo pj for j ∈ [0, l)

i ∈ [1, τ], xi mod pj = Qjri,j , ri,j ← Z ∩ (−2ρ, 2ρ),

i ∈ [1, ℓ− 1], x′i mod pj = Qjr
′
i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ),

Choose xi and x′i according to the CRT algorithm.

Algorithm 1 Calculation of xi using CRT algorithm
N ← 1

for j = 0, · · · , ℓ− 1 do

N ← N.pj

end for

for i = 1, · · · , τ do

xi ← 0

for j = 0, · · · , ℓ− 1 do

Nj ← Nj/pj

Mj ← N−1
j mod pj

xi ← [xi + Qj.ri,j.Mj.Nj] mod N

end for

return (xi)

end for

43

Let us start with the evaluation of cost N . As remembered in the beginning of the

section N = π, and its cost is Õ(λ4(ℓ − 1)2). Then, for calculating Nj , we need

to do (τℓ) division with (η(ℓ − 1))-bit Nj and η-bit pj . Hence our cost is equal to

O(τη2ℓ(ℓ− 1)). After using the convenient parameter set, total cost is Õ(λ9(ℓ2 − ℓ).
The next step is the calculating Mj . To evaluate the cost of Mj , we need to compute

τℓ number of inversion with division. The result is equal to O(η3 + ℓτη2(ℓ − 1)) .If

we use the appropriate parameter set, total cost is Õ(ℓλ11 + λ9(ℓ2 − ℓ)). Later, to

compute xi the number of multiplication is (3ℓτ), the number of addition is (τℓ), and

finally the number of reduction is (τℓ). We do the computation in three steps These

are the followings,

Mj ∗Nj,

ri,j ∗Mj ∗Nj,

Qi,j ∗ ri,j ∗Mj ∗Nj.

First, cost of to compute Mj ∗ Nj is equal to O(η2τℓ(ℓ − 1)), and after the multipli-

cation new length of Mj ∗Nj is changed as (ηℓ). Moreover, If we use the convenient

transformations, total cost is Õ((ℓ2− ℓ)λ9). Secondly, cost of to compute (ri,j ∗Mj ∗
Nj) is equal toO(ηρτℓ2) and length of (ri,j∗Mj∗Nj) is altered as (ηℓ+ρ). After using

the convenient parameter set, it can be stated as Õ(ℓλ9). Eventually, cost of the com-

pute (Qi,j ∗ri,j ∗Mj ∗Nj) is equal toO((ηℓ+ρ)τℓ), and length of (Qi,j ∗ri,j ∗Mj ∗Nj)

is changed as (ηℓ + ρ + µ). It should be noted that µ taken as 2 to allow FHE trans-

formation. After using the convenient parameter set, total cost is Õ(ℓ2λ7). Finally

sk = (pj){0≤i≤l−1} and pk = {x0, (x′i){0≤i≤l−1}, (Qi){0≤i≤l−1}, (xi){0≤i≤τ}}

6.2.2 Encryption

For any m = (m0, · · · ,ml−1) with mi ∈ ZQi
, choose a random binary vector b =

(bi){1≤i≤τ} ∈ {0, 1}τ . Then, ciphertext can be found by using the folowing encryption

algorithm.

c =

[
l−1∑
i=0

mi.x
′
i +

τ∑
i=1

bixi

]
x0

44

In this step we compute complexities of l + τ additions with 1 reduction. We know

that length of the xi and x′i is equal to (µ + ηℓ + ρ), and also length of the xi is

equal to γ from section 6.2.1. Then, cost can be expressed as O(lτ(µ + ηℓ + ρ))

for multiplication, and O(ℓγ(µ + ηl + ρ)) for reduction. After using the convenient

parameter set, total cost is Õ(λ7(ℓ2 + ℓ)).

6.2.3 Squashing

A set y⃗ = {y1, · · · , yΘ} is added to the public key. Here yi ∈ Q, and 0 ≤ yi < 2 with

κ bits of precision. The purpose is to find a sparse subset Sj ⊂ [0,Θ − 1] of size Θ

such that
∑

{i∈Sj} yi ≈ 1/pj (mod 2).

6.2.3.1 Key Generation

Addition to the private key sk∗ = (p0, · · · , pl−1) and public key pk∗, an adition item

xp should be set as following.

xpj ← ⌊2κ/pj⌉

To generate xp we need just l division. As we mentioned in section 6.1.3, using

κ = γ + 2 is sufficient. Then our complexity is O(ηℓ(γ + 2)). After using the

convenient parameter set, the total cost is Õ(ℓ2λ7), and new length of xp is equal to

(γ − η + 2). Than, choose at random a Θ-bit vector s⃗j = ⟨sj,0, · · · , sj,Θ−1⟩ with

hamming weight θ for 0 ≤ j < l. Choose at random integers ui ∈ [0, 2κ+1), where

i = {0, · · · ,Θ− 1} which is dependent to the following rule.

Θ−1∑
i=0

uisj,i = xp (mod 2κ+1)

For satisfying the condition, we need to do Θ addition. We add (κ+ 1) bits ui’s with

each others. Note that, while first we add two (κ+ 1)-bits ui, for the second addition

we add (κ+1)-bit and (κ+2)-bit, and we add κ+1-bit and (κ+Θ)-bit for the Θ th one.

Than cost can be expressed as Õ(Θ(κ+1)). After using the convenient parameter set,

the total cost is Õ(λ10). it should be noted that no need to compute cost of reduction

because reduction in 2κ+1 is just taking first two bits of result of summation. Finally,

set yi = ui/2
κ and y⃗ = {y0, · · · , yΘ−1}. To compute yi’s, we need κ + 1 addition

45

and κ+ 1 multiplications. (Because the yi is a positive number between [0,2) with κ

bits of precision after the binary point). Then, cost can be evaluated as O(Θ(κ+ 1)).

Furthermore, after using the convenient parameter set, the total cost is Õ(λ10).

6.2.3.2 Expanding

Take ciphertext c∗ generated in section 6.2.2. Then create zi for i ∈ {0, · · · ,Θ− 1},
with n = ⌈log2(θ+1)⌉ bits of precision after the binary point for each zi.Then, output

the ciphertext c∗ and z = (zi){i=0,··· ,Θ−1}.

zi ← [c∗ . yi]2

To create zi’s, we need to do Θ multiplications. Note that yi ∈ Q, and 0 ≤ yi < 2

with κ bits of precision. It means that we can take length of the yi’s as (κ + 1)-bit.

Furthermore, length of the c∗ is equal to γ-bit as implied in the section 6.1.2. Thus the

complexity can be expressed asO(Θ(κ+1)γ). After using the convenient parameter

set, the total cost is Õ(λ15).

6.2.3.3 Decryption

Lastly output the message m = (m0, · · · ,mℓ) with

mj ←

[
⌊
Θ−1∑
i=0

sj,i.zi⌉

]
2

⊕ (c mod 2)

In this step, main cost originates from Θ addition. Here length of zi is taken as n+1

bit for n = ⌈log2(θ + 1)⌉. Then, cost can be expressed as O(nΘ). After using the

convenient parameter set, the total cost is Õ(λ5).

6.3 Comparison and Result

In this section, time complexity of DGHV scheme[30] and batch DGHV scheme [7]

are compared. As we mention in first chapter while the DGHV scheme encrypts

the one-bit message, the batch DGHV scheme encrypts an ℓ-bit message vector at a

46

time. The main purpose is to find out which encryption system is more efficient for

encrypting l-bit messages. The first choice is to use the DGHV schema for l-times.

The second choice is to use the batch DGHV scheme one time. We conclude that for

message size l when security parameter ℓ ≤ λ3/2 using batch scheme is more efficient

than using DGHV scheme.

Table 6.1: Time Complexity Comparison
DGHV scheme Batch DGHV scheme

Key Generation of SwHE Õ(λ12) Õ(lλ11 + ((l2 − l)λ9)
Encyption Õ(λ10) Õ(l2λ7)
Squahing-Key Generation Õ(λ10) Õ(λ10)
Squahing- Evaluation and Encryption Õ(λ15) Õ(λ15)
Squahing - Decryption Õ(λ5) Õ(λ5)

47

48

CHAPTER 7

CONCLUSION

Today, with the development of technology, more reliable and efficient algorithms

are provided. People need these algorithms to store and process their private infor-

mation.To operate on encrypted data without decrypting it, and delivering this data

securely to the other party has become an important goal for studies.

In this thesis, we focus on the FHE scheme over the integers and batch FHE scheme.

We give some definition and properties of FHE. Then, we demonstrate the structure

of the functions that can be evaluated homomorphically using arithmetic circuits. We

also describe real-life applications of homomorphic encryption. These applications

have been developed mainly in the fields of health, finance, advertising, and edu-

cation. Furthermore, we present symetric and asymetric key version of the DGHV

scheme. Then, we demonstrate why this schemes are homomorphic under addition

and multiplication operations. Lastly, we give the general review of FHE schemes

and a way to convert a SwHE scheme to FHE scheme. Moreover, we mention some

efficieny problem of DGHV scheme and ways to improve it. These are finding more

efiicient SwHE schemes, extending the message size or message space, speeding up

the bootstrapping process, eliminating the bootstrapping procedure and the squashing

process, and reducing the public key size of the existing scheme. We mainly focus

on "extending message size and message space" solution among them. Finally, we

compare time complexities of DGHV scheme and batch DGHV scheme. We show

that for message size ℓ when security parameter ℓ ≤ λ3/2 using batch scheme is more

efficient than using DGHV scheme.

49

50

REFERENCES

[1] J. Benaloh, Dense Probabilistic Encryption, pp. 120–128, 1994.

[2] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, Patient controlled encryption:
ensuring privacy of electronic medical records, in Proceedings of the 2009 ACM
workshop on Cloud computing security, pp. 103–114, 2009.

[3] D. Boneh, E.-J. Goh, and K. Nissim, Evaluating 2-DNF Formulas on Cipher-
texts, in D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and J. Kilian, editors, The-
ory of Cryptography, volume 3378, pp. 325–341, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, ISBN 978-3-540-24573-5 978-3-540-30576-7, series
Title: Lecture Notes in Computer Science.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (leveled) fully homomorphic
encryption without bootstrapping, ACM Transactions on Computation Theory
(TOCT), 6(3), pp. 1–36, 2014.

[5] Z. Brakerski and V. Vaikuntanathan, Efficient Fully Homomorphic Encryption
from (Standard) LWE, in 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pp. 97–106, IEEE, Palm Springs, CA, USA, October 2011,
ISBN 978-0-7695-4571-4 978-1-4577-1843-4.

[6] Z. Brakerski and V. Vaikuntanathan, Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages, in D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-
gar, M. Y. Vardi, G. Weikum, and P. Rogaway, editors, Advances in Cryptology –
CRYPTO 2011, volume 6841, pp. 505–524, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, ISBN 978-3-642-22791-2 978-3-642-22792-9, series Title:
Lecture Notes in Computer Science.

[7] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and
A. Yun, Batch fully homomorphic encryption over the integers, in Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pp. 315–335, Springer, 2013.

[8] J. H. Cheon, K. Han, and D. Kim, Faster bootstrapping of fhe over the integers,
in International Conference on Information Security and Cryptology, pp. 242–
259, Springer, 2019.

51

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms, MIT press, 2009.

[10] T. ElGamal, A public key cryptosystem and a signature scheme based on dis-
crete logarithms, IEEE transactions on information theory, 31(4), pp. 469–472,
1985.

[11] H. B. Enderton, A mathematical introduction to logic, Elsevier, 2001.

[12] C. Gentry, A fully homomorphic encryption scheme, Stanford university, 2009.

[13] C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of
the 41st annual ACM symposium on Symposium on theory of computing - STOC
’09, p. 169, ACM Press, Bethesda, MD, USA, 2009, ISBN 978-1-60558-506-2.

[14] C. Gentry and S. Halevi, Fully homomorphic encryption without squashing us-
ing depth-3 arithmetic circuits, in 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, pp. 107–109, IEEE, 2011.

[15] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and
System Sciences, 28(2), pp. 270–299, April 1984, ISSN 00220000.

[16] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom genera-
tor from any one-way function, SIAM Journal on Computing, 28(4), pp. 1364–
1396, 1999.

[17] N. Howgrave-Graham, Approximate integer common divisors, in International
Cryptography and Lattices Conference, pp. 51–66, Springer, 2001.

[18] A. Juels, Targeted advertising... and privacy too, in Cryptographers’ Track at
the RSA Conference, pp. 408–424, Springer, 2001.

[19] D. Kahn, The Codebreaker: The Story of Secret Writing, Macmillam, 1976.

[20] R. M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-
memory machines, 1989.

[21] L. Adleman ,R. L. Rivest and M. L. Dertouzos, On data banks and privacy ho-
momorphisms, Foundations of secure computation, 4(11), pp. 169–180, 1978.

[22] S. Martello and P. Toth, Knapsack problems: algorithms and computer imple-
mentations, John Wiley & Sons, Inc., 1990.

[23] P. Martins, L. Sousa, and A. Mariano, A survey on fully homomorphic encryp-
tion: An engineering perspective, ACM Computing Surveys (CSUR), 50(6), pp.
1–33, 2017.

[24] M. Naehrig, K. Lauter, and V. Vaikuntanathan, Can homomorphic encryption
be practical?, in Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pp. 113–124, 2011.

52

[25] K. Nuida and K. Kurosawa, (batch) fully homomorphic encryption over inte-
gers for non-binary message spaces, in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 537–555, Springer,
2015.

[26] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and
practitioners, Springer Science & Business Media, 2009.

[27] P. Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, in J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99, vol-
ume 1592, pp. 223–238, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999,
ISBN 978-3-540-65889-4, series Title: Lecture Notes in Computer Science.

[28] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, Quanti-
fying location privacy, in 2011 IEEE symposium on security and privacy, pp.
247–262, IEEE, 2011.

[29] A. Shpilka and A. Yehudayoff, Arithmetic Circuits: a survey of recent results
and open questions, p. 123.

[30] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully Homomor-
phic Encryption over the Integers, in D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Ran-
gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
and H. Gilbert, editors, Advances in Cryptology – EUROCRYPT 2010, volume
6110, pp. 24–43, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, ISBN
978-3-642-13189-9 978-3-642-13190-5, series Title: Lecture Notes in Com-
puter Science.

[31] C. Zhigang, W. Jian, C. Liqun, and S. Xinxia, Review of how to construct a
fully homomorphic encryption scheme, International Journal of Security and Its
Applications, 8(2), pp. 221–230, 2014.

53

